УДК629.33.000.141

Ершова-Бабенко И. В.,

доктор философских наук, профессор, профессор кафедры искусствоведения и общегуманитарных дисциплин, Международный гуманитарный университет

Гончарова О.Е.,

кандидат технических наук, доцент, доцент кафедры автомобильного транспорта, Одесский национальный политехнический университет

МАКРОМОДЕЛЬ «ВОДИТЕЛЬ-АВТОМОБИЛЬ-СРЕДА» И ПРОБЛЕМА ВЗАИМОДЕЙСТВИЯ СИСТЕМ РАЗНОГО КЛАССА В АСПЕКТЕ КОНЦЕПТУАЛЬНОЙ МОДЕЛИ ПСИХОСИНЕРГЕТИКИ «ЦЕЛОЕ В ЦЕЛОМ»

Аннотация. В статье приводится обоснование применения методологии постнеклассики при конструировании автомобиля для увеличения безопасности, а также снижения травматичности и ресурсозатрат в системе «водитель-автомобиль—среда» [В—А—С]. Выдвигается гипотеза о необходимости при конструировании безопасного автомобиля учитывать степень различия подкласса систем автомобиля и человека, их моделей и принципов поведения. Показана необходимость совмещения пространственно-временного осевого центрирования конструкции автомобиля и пространственно-временного осевого центрирования человека (его психики, личности, тела, мозга) на стадии проектирования и производства автомобиля для создания абсолютно безопасного автомобиля как для человека, так и для окружающей среды.

Ключевые слова: безопасность, система «водитель—автомобиль—среда» [В—А—С], постнеклассические методологии, человеко- и психомерность, критическая разность/критический порог, пространственно-временное осевое центрирование

Постановка проблемы. Несмотря на различный уровень автомобилизации и разные условия эксплуатации, количество ДТП, отнесенное к количеству автомобилей (на 100 автомобилей), в разных странах отличается не намного (рис. 1).

Возникает вопрос: что же действительно влияет на безопасность? Ответ большинства специалистов неожиданный: человеческий фактор.

Наш ответ расширяет ответ специалистов и акцентирует внимание на методологическом аспекте вопроса: влияет критическая разность, критический порог, возникающий при соединении систем разного подкласса: системы автомобиля и систем человека, окружающей среды. Так, водитель (В) как человеко-, психомерная

среда/система [2;14;16] и окружающая среда (С) по определению принадлежат к открытым нелинейным самоорганизующимся (ОНС), для которых в постнеклассике показаны принципиально иные принципы и особенности поведения по сравнению с линейными, закрытыми, замкнутыми [1;4-6;8 и др.]. В тоже время автомобиль (А) как автоматизированная система по определению принадлежит к закрытым, линейным, замкнутым системам (ЗЛС).

В итоге получаем макромодель (ОНС — ЗНС—ОНС) или [В—А—С] [14;16]. Степень различия систем определяет возникновение критического порога, что демонстрируется сопоставлением их моделей и принципов поведения. Концептуально макромодель [В—А—С] выражается концептуальной моделью (философской категорией) «целое в целом» и ее разновидностями, разработанными в психосинергетике [2;3]. В данном случае это модель [(«нелинейное целое» — человек в «линейном целом» — автомобиле) в «нелинейном целом» — среде].

Актуальность исследования. Известно, что массовая автомобилизация сопряжена со значительными издержками. За год (2014), по оценке Всемирной организации охраны здоровья, в мире погибает более 1,3 миллиона человек, и каждый пятый из них — ребенок, от 20 до 50 миллионов человек получают серьезные травмы. Более 3,7 тысяч человек ежедневно погибает в дорожных авариях. На украинских дорогах погибает 8 человек в сутки.

Провозглашение Генеральной Ассамблеей ООН десятилетия с 2011 по 2020 годы десятилетием действий по обеспечению безопасности дорожного движения свидетельствует о том, что это серьезная проблема международного развития, требующая безотлагательного решения. Проблема обеспечения безопасности дорожного движения остается актуальной для всех стран.

		Уровень автомобилизации: относительное число ATC на 1000 человек	Количество ДТП на 100 АТС	Относительное количество пострадавших на 100 ДТП	Относительное количество по- гибших в ДТП на 10 000 ATC
США (1)		765	1,34	153,0	2,6
Западная Европа	Франция(7)	565	0,90	132,2	2,5
	Германия (14)	519			
Россия (53)		156	1,11	128,9	22,5
Украина (65)		98	0,8	124	21,8
Япония (11)		543	0,7	100	1,9

Рис. 1. Статистические показатели (2014 год) Европейской экономической комиссии ООН, характеризующие безопасность дорожного движения стран с разным уровнем автомобилизации

Связь исследования с важными научными и практическими задачами. Проблема обеспечения безопасности макросистемы «водитель—автомобиль—среда» вошла в круг теоретико-методологических и практических задач научно-исследовательских тем «Методологические проблемы разработки новой теории психики» и «Управління технологічними процесами на підприємствах автомобільного транспорту»[12;9].

Анализ последних исследований и публикаций. К настоящему времени решение вопроса безопасности дорожного движения осуществляется в аспекте, что приоритетную роль в ее обеспечении безопасности дорожного движения играет не просто, как принято считать, конструкция автомобиля, а степень её согласования (по типу систем) с человеческим фактором. Предлагаем рассмотреть данную проблему с методологических позиций постнеклассического этапа развития науки. Одним из методологических направлений этого этапа стала методология психосинергетики и разработанная в ее рамках концептуальная модель (философская категория) «целое в целом» [2]. Эта модель на наш взгляд позволяет рассмотреть человекомерность как фактор, влияющий на безопасность, но не через автоматизацию, т. к. она ведёт к росту степени агрессивности среды обитания человека, а через методологическое соответствие параметров открытость/закрытость, нелинейность/линейность систем, образующих макросистему. Этот шаг позволяет нам осуществить переход от дихотомии «часть — целое» (холистика, новая холистика) [6] к концептуальной модели «целое в целом», включая «нелинейное целое», (альфахолистика — новейшая холистика) при проектировании макросистемы нового типа,

в том числе автомобиля типа «дружественный интерфейс»: целое — человек, целое — автомобиль, целое — среда.

Выделение нерешенных ранее аспектов общей проблемы безопасности макросистемы «водитель—автомобиль—среда»

В настоящее время совершенствование конструкции автомобиля при проектировании происходит по схеме: от макросистемы [В-А-С] к макросистеме [А-С] и выражается в уменьшении доли присутствия человека в макросистеме. Возникают полностью автоматизированные системы, исключающие присутствие в них человека. Однако, как свидетельствует статистика, степень автоматизации по-прежнему не влияет на безопасность дорожного движения. Хотя применение мехатронных систем существенно уменьшает тяжесть последствий, благодаря предотвращению ошибок управления (активная безопасность конструкции) и способствует снижению тяжести последствий ДТП (пассивная безопасность конструкции), но не влияет на их количество. Это подтверждается тем, что, несмотря на различный уровень автомобилизации и разные условия эксплуатации, количество ДТП, отнесенное к количеству автомобилей (на 100 автомобилей), в разных странах отличается не намного (см. рис. 1).

Новизна. Новизна постановки проблемы, таким образом, выражается в том, что акцентируется и методологически раскрывается: определенная несовместимость в рамках макросистемы (ОНС/водитель—ЗНС/автомобиль — ОНС/среда) входящих в нее макросистем по показателям принадлежности к разным подклассам (1) и возникновение критической разности при взаимодействии таких сложных систем разного подкласса (2).

Это рассматривается как определяющий источник снижения безопасности (увеличение смертности водителей, независимо от уровня экономического развития страны) и источник углубления экологической проблемы (разрушение автомобилей, свалки — загрязнение окружающей среды). Принципиальные различия открытых и закрытых систем приведены на рис. 2 [4].

Относительно поведения **ОНС** С. П.Курдюмов [6] отмечает такие *особенности*. 1) При разных начальных воздействиях процессы в **ОНС** идут к разным типам структур. Из-за большого количества типов структур возникает очень сложное поведение. Однако это сложное поведение описывается относительно простыми модельными нелинейными уравнениями с нелинейными источниками и стоками, которые отражают особенности ОНС. 2) Источники и стоки в **ОНС** сами являются нелинейными.

Общенаучное значение методологии постнеклассики, необходимость ее применения для увеличения безопасности и снижения травматичности/ресурсозатрат в системе «водитель автомобиль—среда» [В—А—С]

Таким образом, позитивное исследование названных вопросов осуществлялось в контексте постнеклассических научных позиций как блока естественных, так и блока гуманитарных наук. Это позволило обнаружить ограниченность традиционной модели и показать актуальность формирования реализации в рамках философии и методологии науки, а также решения практических задач нового научного направления исследования системы «водитель-автомобиль-среда» с позиций концептуальной модели «целое в целом», включая нелинейное целое [2;14;16].

Основная идея данной работы состоит в том, чтобы при моделировании макросистемы [В-А-С] акцентировать внимание на макроуровневости этой системы и учете методологически разного класса систем, входящих в нее, на ее человеко- и психомерности и возникновении показателя критической разности в их взаимодействии. Другими словами, предлагается привычную модель системы[В-А-С] (1) трансформировать вмодель макросистемы $[A^{fB}-C]$ (2), где подразумевается такое изменение качества автомобиля и отношений в макросистеме $[A^{fB}-C]$ (2), чтобы онпревратился в «дружественныйинтерфейс» (принятые обозначения: B — водитель, A — конструкция автомобиля, $C - \text{среда}, A^{fB} - \text{автомо-}$ биль, конструкция которого учитывает человеко- и психомерность функции водителя, ее преимущества и слабости). Традиционно проектирование направлено на создание автоматизированной системы [А-С] (3), которая исключает внимание к человеку, но сохраняет, а порой и обостряет, проблему безопасности. Однако теперь это осуществляется на уровне другой макросистемы $[\mathcal{I} - человек, не водитель] [A - C]) (4).$

Рассмотрим сказанное более подробно. Макросистема типа [В—А—С] является по определению эргатической, т. е. системой, содержащей в качестве элемента человека. При переходе на концептуальную модель «целое в целом» мы оказываемся в методологическом поле «неэлементная среда» [2]. Традиционно же считается, что оставаясь эргатической, макросистема типа [В—А—С] должна приближаться к автоматической, от макросистемы [В—А—С] к макросистеме [А—С], и именно это позволит предельно интенсифицировать транспортные процессы, обеспечивая одновременно

Открытые линейные системы (ОЛС)	Открытые нелинейные системы (среды) (ОНС)		
не ведут к образованию диссипативных структур	ведут к образованию диссипативных структур*		
плавный рост	существенно неравномерный рост		
один путь развития или	несколько качественно различных путей развития (эволюции), т. е.		
однозначность пути эволюции системы	множественность путей эволюции среды (потенци- ально)		
предсказуемость пути эволюции	эволюция происходит скачкообразно в особых точ- ках — точках бифуркации		
пропорциональность входных и выходных сигналов	малый сигнал на входе может вызывать сколь угодно сильный отклик на выходе при определенных состояниях (при определенной стадии/фазе, при определенных граничных условиях)		

Рис. 2. Сравнительная характеристика открытых линейных и нелинейных систем * По мнению авторов идеи X-науки [5] специальное понятие «диссипативная структура», введенное И. Пригожиным [1], заменило в Бельгийской школе другое понятие — основное понятие синергетики, применяемое Г. Хакеном (1981) [4] — «понятие структуры как состояния, возникающего в результате когерентного (согласованного) поведения большого числа частиц» [2].

приемлемые уровни безопасности, энергетической эффективности, комфортабельности и т. д. [7].

В основу настоящего исследования макросистемы типа [В-А-С] как эргатической положена идея, изложенная в [2], о необходимости при конструировании подобных макросистем учитывать степень соответствия/несоответствия друг другу входящих в неё систем [В], [А] и [С], поскольку система [В] — это человеко-/психомерная система, которая является по определению открытой, нелинейной, самоорганизующейся (ОНС), система [А] — это механомерная, линейная, а система [С] - это природомерная, открытая, нелинейная, самоорганизующаяся система. (Мерность является основанием постнеклассической классификации наук, 2005) [2]. Тогда, регулируя степень соответствия (критическую разность) можно влиять на безопасность принципиально новым путем путем приближения к согласованности поведения систем по показателю открытость/закрытость, линейность/нелинейность и их синтез/синергиз.

В соответствии с этой идеей предлагается новая постнеклассическая трактовка эргатической системы, которая приобретает следующий вид: $[A^{fB} - C]$. В основе данной трактовки лежит утверждение, что макросистема этого типа должна обеспечивать и повышать уровень безопасности для человека за счет: 1) уменьшение показателя критической разности за счет степени соответствия/согласованности систем/сред по характеру подкласса систем/сред, объединяемых в макросистему; 2) приближения макросистемы по уровню организации в первую очередь к характеристикам психомерности человека, т. к. именно это обеспечит его безопасность, позволит предельно интенсифицировать человекомерные процессы путем задействования его естественных возможностей, а в данном случае - транспортные процессы в соответствии с методологией психосинергетики, постн еклассики; 3) внедрения ресурсосберегающих технологий, например, типа SkyWay (уровни энергии, экологии, информации, комфортности и проч.); 4) учета не только преимущества, но и «слабости» этой -мерности, что также вводится в показатель «степень соответствия друг другу систем, соединяемых в макросистему типа $[A^{fB}-C]$ » [14;16].

Применение психосинергетической концептуальной модели «целое в целом», включая «нелинейное целое в нелинейном целом» (варианты: «среда в среде») на примере к анализу и конструированию макросистемы типа [B-A-C] основано на том, что концептуальная модель «целое в целом» допускает возможность существования одного целого в составе другого целого в разных режимах, в т. ч. нелинейного макроцелого. Отличие данной постановки вопроса новейшей холистики (альфахолистики) (2005) от «новой холистики» С. П. Курдюмова с соавторами (1994) в том, что модель С. П. Курдюмова сохраняет отношения «часть — целое», вводя новое понимание в том, что «целое не больше и не меньше суммы частей, оно качественно иное» [6]. Концептуальная модель «целое в целом» позволит включить отношения в режиме «нелинейное целое в нелинейном целом» как без влияния и взаимодействия, так и с разной их степенью. Такая модель позволяет выйти за пределы дихотомии «часть-целое» или сведения к элементам (редукционизм), а также частично за границы новой холистики [6], сохраняющей мировоззренческую позицию «часть — целое», т. к. в ней рассматривается «зависимость способов топологически правильно объединенных структур и ускорения темпа развития целого и его частей» [6].

Рассмотрение системы [В—А—С], исходя из концептуальной модели «целое в целом» или «среда в среде», кроме того, позволит учитывать человекои психомерность макросистемы [A^{jB} —С] и рассматривать эту мерность в определенных условиях как управляющий параметр, а также применять психосинергетические технологии. По утверждению специалистов [8], плавно меняя управляющие параметры, можно менять системы нижележащих уровней. Иногда эти изменения выглядят весьма бурно, кризисно, и тогда говорят о критических (бифуркационных) значениях управляющих параметров. Эти параметры входят в триаду уровней — макро-, теоретический и практический.

Мерность является основанием концептуальной модели и постдисциплинарной классификации наук (2005, 2008). В таком понимании мерность выступает как единое осевое понятие (рис. 3), позволяющее применять одновременно разновременное и разное по основаниям научное знание, примирять авторов, по-разному трактующих классику, неклассику, постнеклассику, научное знание, различающиеся в т. ч. и степенью разработанности научного аппарата [2].

Мерность как основание новой постдисциплинарной классификации наук позволяет избежать

Рис. 3. Постдисциплинарная (постнеклассическая) классификация наук

неудобств при меж-, транс- и полидисциплинарных исследованиях, ставших особенно характерными для современного этапа развития науки. Неудобства возникают, как известно, из-за противоречий, несовместимостей.

Один из путей, позволяющих избежать подобные противоречия — переход на определенную мерность (макромерность) исследования, под «крышей» которой «мирно» могут сосуществовать как линейность, так и нелинейность, как фундаментализм, так и представители критического отношения к нему — антифундаменталистской парадигмы, в зависимости от того, какую именно мерность стремится рассмотреть исследовательская группа. Это не аналог «всеядности», но инструмент временных, на период исследования, методологических инструментальных договоренностей, которые становятся, наконец, возможными в условиях разной степени разработанности научного аппарата разных наук и направлений. Кроме того, макромерность как основание новой классификации наук позволяет освободиться от невообразимой громоздкости дисциплинарно организованного «древа» наук и их изолированности по типу «отсеков» вместо необходимого при междисциплинарном исследовании лояльного соединения.

Этому способствует определение места психосинергетики в постнеклассике [3] и ее следствий, обозначившихся в последние десятилетия.

Именно в основу методологии психосинергетики положено явление психомерности и человекомерности сложных систем разного происхождения, введено понятие «психомерная среда» как производное от системо-, переходоформирующей функции психики человека — гиперсистемы синергетического порядка, и шестнадцать принципов ее поведения [2;3]. Это позволяет применить данную позицию к разработке новой трактовки системы «водитель» и макросистемы [В—А—С] и предельно интенсифицировать транспортные процессы, обеспечивая одновременно приемлемые уровни безопасности, энергетической эффективности, комфортабельности, экологичности для человека.

Также это позволит определять и учитывать методологический аспект, то, что включаемые в макросистему [В—А—С] системы принадлежат к разным подклассам по определению: человек, его психика и среда — экологическая, социальная, информационная, культурологическая, ..., принадлежат к ОНС средам, а автомобиль — к линейным (открытым, закрытым, замкнутым, изолированным). При традиционных подходах к соединению этих, принципиально противоречащих друг другу, сред в общую макросистему [В—А—С] проявляется и постоянно растет травматичность на всех трех

уровнях, включаемых в макросистему [B—A—C] — водитель/человеко-, психо-мерная среда, — автомобиль, — эксплуатация, -окружающая среда.

Методологические установки классической, неклассической и постнеклассической науки напрямую связаны с исследованием систем разного класса/подкласса — открытых линейных, открытых нелинейных, саморегулирующихся, саморазвивающихся, самоорганизующихся.

В то же время, в формировании теоретикометодологического основания данной установки должна быть учтена четкость осмысления «связей между синергетической парадигмой и системным подходом», возникающая «при интерпретации синергетики как теоретического описания самоорганизующихся систем», т. к. именно «в этих связях синергетические представления могут быть включены в современную картину мира» [10]. Подобная позиция представлена и в [11], где подчеркивается, что «истинно современным является и строго системное мышление, и синергетическое осмысление процессов развития в природе, обществе, культуре, человеческой жизни, и междисциплинарные связи разных областей знания, включающие философскую рефлексию как способ осознания методологических принципов такой самоорганизации познавательной деятельности».

Это позволяет привлечь следующие разработки:

- 1) трехуровневая модель макротеоретический, теоретический и практический уровни вместо двухуровневой теория и практика;
- 2) методология психосинергетики [3] в исследовании психомерных сред (ПС) как открытых нелинейных самоорганизующихся (ОНС), рассматриваемых с позиции концептуальной модели «целое в целом» и
- 3) возможности ее практического применения, показавшие продуктивность новой концепции для исследования и моделирования сложных систем, в функционировании которых присутствует (участвует) человек, с одной стороны, и автоматизированная система, например, автомобиль, с другой, и окружающая среда, с третьей.
- это концепция «целое в целом» (или «среда в среде»), каждая из которых или одна являются нелинейной; тогда в первом случае мы получаем «уникальное явление» синтез нелинейных сред, который можно рассматривать и как нелинейный синтез [3].

Способом осуществления данной концептуальной постановки вопроса является трансформация существующей цепочки 1: [«моделирование макросистемы» — «изготовление изделия»] в цепочку нового типа путем введения дополнительного звена «моделирование виртуальной макросистемы

нового типа $[B-A-C]^{\mathrm{New}}$ », основанной на концептуальной модели «целое в целом» и выражающей не просто психомерные показатели целого-человека/водителя и автоматические показатели целого-автомобиля/изделия, а имеющуюся степень их неадекватности, рассогласованности и возможную степень согласованности. В результате получим цепочку 2: [«моделирование макросистемы» — «моделирование виртуальной макросистемы нового типа $[B-A-C]^{\mathrm{New}}$ » — «изготовление изделия»].

В рамках психосинергетической методологии степень адекватности/неадекватности или согласованности/рассогласованности становится критерием оценки критической разности/критического порога при взаимодействии неадекватных систем, а следовательно, критерием оценки безопасности/травматичности и ресурсосбережения.

Критическая разность на разных уровнях и/ или в целом является маркером сформированности точки/процесса перехода, выражающей факт возникновения травмы разного генеза. Само понятие критическая разность появилось в контексте междисциплинарного направления — синергетики, поскольку ею изучаются сложные самоорганизующиеся процессы различной природы в целях создания некоторой общей концепции на основе аналогий в этих процессах, «новой концепции, прокладывающей путь к построению единой теории самоорганизации в сложных системах» [6].

При переходе к методологии психосинергетики, концептуальной модели «среда в среде» и разработке на их основе технологии, в постнеклассическом исследовании эргатических систем мы предполагаем получить снижение травматичности и ресурсозатрат в макросистемах $[A^{iB}-C]$ и увеличение безопасности, что эффективно повлияет и на ситуацию в автомобильной промышленности.

Еще одним концептуальным решением рассматриваемой проблемы взаимодействия систем разного класса в рамках одной макромодели становится концепция психосинергетики ОПВЦ (осевого пространственно-временного центрирования ОНС), основанная на фрактальности механизма осевого пространственно-временного центрирования психики человека, его личности и тела (мозг) с одной стороны, [13] и автомобиля, с другой. Эта теоретическая концепция получила практическую реализацию при реабилитации посттравматических состояний, после черепно-мозговых травм при политравме в условиях диффузно-аксонального повреждения головного мозга [13], психоэмоциональной травмы [13] и ценностно-личностной [13]. Психоснергетическая концепция ОПВЦ ОНС, разномерного и разномасштабного целого (2008; 2009; 2011) получила развитие в отношении высокоскоростных политравм разного генеза с

диффузным характером повреждения связей (психология, социология, политология, информтехнологии, реабилитация — нейромышечная, речевая и др.).это должна быть отдельная статья

Идея данной работы состоит в том, что если мы хотим при решении задач конструирования автомобиля повысить безопасность, то сделать это можно путем моделирования макросистемы типа $[A^{fB} - C]$ [14]. Ее отличие состоит в усилении человеческого в конструкции автомобиля по сравнению с принятыми на сегодняшний день разработками [B-A-C] или [A-C]. В этом случае необходимо ответить на вопрос: в чем это будет выражаться. Ответом может стать постановка вопроса об ОПВЦ конструкции автомобиля. При этом, чтобы оно было как можно ближе к вышеназванному пространственно-временному центрированию человека — его психики, личности, тела (мозга). Основанием для подобной постановки вопроса явились результаты, полученные при реабилитации людей, получивших черепно-мозговую, психоэмоциональную или ценностно-личностную травмы при высокоскоростных дорожно-транспортных происшествиях с диффузно-аксональным повреждением головного мозга (ДАПГМ), а также выделение обобщенной модели высокоскоростных травм разного генеза с диффузным характером повреждения [15].

Выводы. Для обеспечения безопасности системы [B-A-C] «водитель— автомобиль— среда» необходимо учитывать роль постнеклассического макро- и мегамоделирования в представлении привычной системы [B-A-C] «водитель—автомобиль—среда» с современных научных позиций, необходимость ее исследования как макросистемы в русле синергетики и психосинергетики, человеко- и психомерности, раскрытия специфичности ее целостности через разномерность входящих в макросистему других систем, принципиально противоречащих друг другу, через концептуальную модель «целое в целом».

При совмещении осевого пространственновременного центрирования конструкции автомобиля и осевого пространственно-временного центрирования человека (его психики, личности, тела, мозга) на стадии проектирования и производства автомобиля возможно создание абсолютно безопасного автомобиля как для человека, так и для окружающей среды. Совпадение «геометрий» конструкции автомобиля и человека позволит предельно интенсифицировать транспортные процессы, обеспечивая одновременно приемлемые уровни безопасности, энергетической эффективности, комфортабельности, экологичности и т. д. [16]. Но это вопрос следующей статьи.

Перспективы использования результатов исследования

При переходе к методологии психосинергетики, концептуальной модели «среда в среде»/«целое в целом» и разработанной на их основе технологии, в постнеклассическом исследовании эргатических систем мы предполагаем получить снижение травматичности и ресурсозатрат в макросистемах [$A^{\mathcal{B}}$ -C] и увеличение безопасности, что эффективно повлияет и на ситуацию в автомобильной промышленности.

Литература

- 1. Prigogine I., Stengers I. ORDER OUT OF CHAOS. Man's new dialogue with nature. Heinemann. London. 1984. 430p.
- 2. Ершова-Бабенко И. В. Психосинергетические стратегии человеческой деятельности. (Концептуальная модель). Монография / Ирина Викторовна Ершова-Бабенко. В.: NOVA KNYHA, 2005. 360с.
- 3. Ершова-Бабенко И.В. Место психосинергетики в постнеклассике / И. В. Ершова-Бабенко // Постнеклассика: философия, наука, культура: Коллективная монография. / Отв. ред. Л.П. Киященко, В.С. Степин. С-Пб.: Издательский дом «Міръ», 2009. С. 460 488.
- 4. Haken H. Synergetics. An Introduction. Nonequilibrium Phase Transitions in Physics, Chemistry and Biology, 3.,erw. Aufl., Springer, Berlin, 1983.
- 5. Данилов Ю. А., Кадомцев Б. Б. Что такое синергетика? // В сб. «Нелинейные волны. Самоорганизация». М.: Наука, 1983. С. 30-43.
- 6. Князева Е. Н. Законы эволюции и самоорганизации сложных систем / Е. Н. Князева, С. П. Курдюмов. М.: Наука, 1994. 236 с. (Серия «Кибернетика неограниченные возможности и возможные ограничения).
- 7. Гащук П.Н. Энергопреобразующие системы автомобиля. Идентификация и анализ. Монография / Петр Николаевич Гащук. Харьков, 1998. 270 с.
- 8. Буданов В. Г.Методология синергетики в постнеклассической науке и в образовании / Владимир Григорьевич Буданов. М.: Издательство ЛКИ, 2008. 232 с.
- 9. Заключительный отчет о научно-исследовательской работе № 26-19 «Управління технологічними процесами на підприємствах автомобільного транспорту» кафедры автомобильного транспорта Одесского национального политехнического университета, № госрегистрации 0110U000371, раздел 3 «Методологія дослідження взаємодії людини та мехатронних транспортних систем». ОНПУ, 2012. С. 90 115.
- Юдин Э.Г. Системный подход и принцип деятельности. Методологические проблемы современной науки / Юдин Э.Г. М.: «Наука», 1978. 321 с.
 Каган М. С. Философская теория ценности /
- 11. Каган М. С. Философская теория ценности / Моисей Самойлович Каган. СПб.: ТОО ТК «Петрополис», 1997. 205 с.
- 12. Заключительный отчет о научно-исследовательской работе «Методологические проблемы разработки новой теории психики и нооэтики в контексте постнеклассики» кафедры философии Одесского медицинского национального университета № госрегистрации 0108U011002. Одесса: ОНМедУ, 2013.
- 13. Ершова-Бабенко И. В. Концепция пространственно-временного осевого центрирования психики и личности в условиях высокоскоростной психоэмоциональной травмы. Макромоделирование стратегии психомерных сред в русле психосинергетики. ВСб.: Акту-

- альні проблеми психології // Под ред. С.Д. Максименко, М.-Л.А. Чепы. Том ІХ, часть 3.- К.: 2008.
- 14. Ершова-Бабенко И. В., Гончарова О.Е. Методология психосинергетики в постнеклассическом исследовании эргатических транспортных систем// Материалы третьей Всероссийской научной конференции «Системы и модели: границы интерпретаций». Томск, ТГПУ, 14-16 февраля 2010. С. 9—12.
- 15. Ершова-Бабенко И.В. Концептуальные модели психосинергетики / И.В. Ершова-Бабенко // Науковий вісник Міжнародного гуманітарного університету. Серія: Історія. Філософія. Політологія. 2014. Вип. 7. С. 50 59.
- 16. Yershova-Babenko I., Goncharova O. SPACE-TEMPORAL AXIAL CENTERING CONCEPTION in the «GEOMETRIES» of CAR and DRIVER /PERSON / Yershova-Babenko I., Goncharova O. // 14th International Conference on Geometry and Graphics (ICGG) «Applied Geometry and Graphics». Kyoto, Japan, august, 5-9, 2010. 370 371.

Єршова-Бабенко İ.В., Гончарова О.Є. Макромодель «водій—автомобіль—середовище» та проблема взаємодії систем різного класу в аспекті концептуальної моделі психосинергетики «ціле в цілому». — Стаття

Анотація. У статті наводиться обґрунтування застосування методології постнеклассики при конструюванні автомобіля для збільшення безпеки, а також зниження травматичності і ресурсозатрат в системі «водій-автомобіль-середовище» [В-А-С]. Висувається гіпотеза про необхідність при конструюванні безпечного автомобіля враховувати міру відмінності підкласу систем автомобіля і людини, їх моделей і принципів поведінки. Показана необхідність поєднання просторово-часового осьового центрування конструкції автомобіля і просторово-часового осьового центрування людини (його психіки, особистості, тіла, мозку) на стадії проектування і виробництва автомобіля для створення абсолютно безпечного автомобіля як для людини, так і для навколишнього середовища.

Ключові слова: безпека, система «водій—автомобіль—середовище» [В—А—С], постнекласичніметодології, людино- і психомірность, критична різниця/ критичний поріг, просторово-часове осьове центрування

Yershova-Babenko I., Goncharova O. A macromodel «driver/person-vehicle-environment» and the problem of interaction of systems of different classesin the aspect of the conceptual model of psychosynergetic «whole in a whole». — Article

Summary. In article the substantiation of the application of the post-non-classical methodology in the construction of the car to increase the safety and reduce the trauma and costs in the system «driver/person—vehicle—environment» [D—V—E]. The hypothesis on the need when construction a safe car to take into account the degree of difference of subclass of vehicle systems and humans, their models and principles of behavior patterns. The necessity of combining the spatial-temporal axial centering of the construction car and the spatial-temporal axial centering of person (his mind, personality, body, brain) at the design stage and manufacturing of the car to create a car completely safe for humans and for the environment.

Keywords: safety, system «driver/person—vehicle—environment» [D—V—E], postnonclassical methodology, human- and psychomeasurement, the critical difference/critical threshold, spatial-temporal axial centering.

№ 10-2015 — 59